BIENVENIDOS A MI PAGINA .
chiquityquimica  
 
  ERNEST RUTHERFORD 05-05-2024 12:03 (UTC)
   
 

Ernest Rutherford

 
Ernest Rutherford
Ernest Rutherford.jpg
Ernest Rutherford
Nacimiento 30 de agosto de 1871
Brightwater, Nueva Zelanda
Fallecimiento 19 de octubre de 1937 66 años
Cambridge, Inglaterra
Residencia Flag of England.svg Inglaterra
Nacionalidad(es) Bandera de Nueva Zelanda Neozelandesa y Flag of the United Kingdom.svg británica
Campo(s) Química y Física
Instituciones McGill University
University of Manchester
Alma máter University of Canterbury
Cambridge University
Supervisor doctoral Joseph John Thomson Nobel prize medal.svg
Estudiantes
destacados
Mark Oliphant
Patrick Blackett Nobel prize medal.svg
Hans Geiger
Niels Bohr Nobel prize medal.svg
Cecil Powell Nobel prize medal.svg
Teddy Bullard
Pyotr Leonidovich Kapitsa Nobel prize medal.svg
John Cockcroft Nobel prize medal.svg
Ernest Walton Nobel prize medal.svg
Charles Drummond Ellis
James Chadwick Nobel prize medal.svg
Ernest Marsden
Edward Andrade
Frederick Soddy Nobel prize medal.svg
Edward Victor Appleton Nobel prize medal.svg
Bertram Boltwood
Kazimierz Fajans
Charles Galton Darwin
Henry Moseley
A.J.B.Robertson
Conocido por Ser el padre de la física nuclear
Premios destacados Nobel prize medal.svg Premio Nobel de química

Fue suegro de Ralph Fowler

Ernest Rutherford, barón Rutherford de Nelson, OM, PC, FRS, conocido también como Lord Rutherford (Brightwater, Nueva Zelanda, 30 de agosto de 1871Cambridge, Reino Unido, 19 de octubre de 1937), fue un físico y químico británico.

Se le considera el padre de la física nuclear. Estudió las emisiones radioactivas descubiertas por H. Becquerel, y logró clasificarlas en alfa, beta y gamma. Halló que la radiactividad iba acompañada por una desintegración de los elementos, lo que le valió ganar el Premio Nobel de Química en 1908. Se le debe un modelo atómico, con el que probó la existencia del núcleo atómico, en el que se reúne toda la carga positiva y casi toda la masa del átomo. Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.

Si durante la primera parte de su vida se consagró por completo a sus investigaciones, pasó la segunda mitad dedicado a la docencia y dirigiendo los Laboratorios Cavendish de Cambridge, en donde se descubrió el neutrón. Fue maestro de Niels Bohr y Robert Oppenheimer.


 

Contenido

[ocultar]

[editar] Los primeros años

El fisicoquimico Ernest Rutherford era el cuarto los doce hijos de James y Martha Rutherford. Su padre era un escocés granjero y mecánico, mientras su madre, nacida en Inglaterra emigró antes de casarse. Allí había sido maestra. Ambos deseaban dar a sus hijos una buena educación y tratar de que pudiesen proseguir sus estudios.

Rutherford destacó muy pronto por su curiosidad y su capacidad para la aritmética. Sus padres y su maestro lo animaron mucho, y resultó ser un alumno brillante, lo que le permitió entrar en el Nelson College, en el que estuvo tres años. También tenía grandes cualidades para el rugby, lo que le valía ser muy popular en su escuela. El último año, terminó en primer lugar en todas las asignaturas, gracias a lo cual entró en la Universidad, en el Canterbury College, en el que siguió practicando el rugby y en el que participó en los clubs científicos y de reflexión.

Por esa época empezó a manifestarse el genio de Rutherford para la experimentación: sus primeras investigaciones demostraron que el hierro podía magnetizarse por medio de altas frecuencias, lo que de por sí era un descubrimiento. Sus excelentes resultados académicos le permitieron proseguir sus estudios y sus investigaciones durante cinco años en total en esa Universidad. Se licenció en Christchurch y poco después consiguió la única beca de Nueva Zelanda para estudiar matemáticas, y sobrevivió el último año como maestro. Obtuvo de ese modo el título de "Master of Arts" con una doble primera clase en matemáticas y física.

En 1894 obtuvo el título de "Bachelor of Science", que le permitió proseguir sus estudios en Gran Bretaña, en los Laboratorios Cavendish de Cambridge, bajo la dirección del descubridor del electrón, J.J. Thomson a partir de 1895. Fue el primer estudiante de ultramar que alcanzó esta posibilidad. Antes de salir de Nueva Zelanda, se prometió con Mary Newton, una joven de Christchurch. En los laboratorios Cavendish, reemplazaría años más tarde a su maestro J.J. Thomson.

[editar] Cambridge, 1895-1898

En primer lugar prosiguió sus investigaciones acerca de las ondas hertzianas, y sobre su recepción a gran distancia. Hizo una extraordinaria presentación de sus trabajos ante la Cambridge Physical Society, que se publicaron en las Philosophical Transactions de la Royal Society of London, hecho poco habitual para un investigador tan joven, lo que le sirvió para alcanzar notoriedad.

En diciembre de 1895, empezó a trabajar con Thomson en el estudio del efecto de los rayos X sobre un gas. Descubrieron que los rayos X tenían la propiedad de ionizar el aire, puesto que pudieron demostrar que producía grandes cantidades de partículas cargadas, tanto positivas como negativas, y que esas partículas podían recombinarse para dar lugar a átomos neutros. Por su parte, Rutherford inventó una técnica para medir la velocidad de los iones, y su tasa de recombinación. Estos trabajos fueron los que le condujeron por el camino a la fama.

En 1898, tras pasar tres años en Cambridge, cuando contaba con 27 años, le propusieron una cátedra de física en la Universidad Mc Gill de Montreal, que aceptó inmediatamente, pues representaba para él la posibilidad de reunirse con su prometida, que seguía viviendo en Nueva Zelanda.

[editar] Montreal, 1898-1907: radiactividad

Becquerel descubrió por esa época (1896) que el uranio emitía una radiación desconocida, la "radiación uránica". Rutherford publicó en 1899 un documento esencial, en el que estudiaba el modo que podían tener esas radiaciones de ionizar el aire, situando al uranio entre dos placas cargadas y midiendo la corriente que pasaba. Estudió así el poder de penetración de las radiaciones, cubriendo sus muestras de uranio con hojas metálicas de distintos espesores. Se dio cuenta de que la ionización empezaba disminuyendo rápidamente conforme aumentaba el espesor de las hojas, pero que por encima de un determinado marco disminuía más débilmente. Por ello dedujo que el uranio emitía dos radiaciones diferenciadas, puesto que tenían poder de penetración distinto. Llamó a la radiación menos penetrante radiación alfa, y a la más penetrante (y que producía necesariamente una menor ionización puesto que atravesaba el aire) radiación beta.

En 1900, Rutherford se casa con Mary Newton. De este matrimonio nació en 1901 su única hija, Eileen.

Por esa época, Rutherford estudia el torio, y se da cuenta al utilizar el mismo dispositivo que para el uranio, de que el hecho de abrir una puerta en el laboratorio perturba notoriamente el experimento, como si los movimientos del aire en el experimento pudieran alterarlo. Pronto llegará a la conclusión de que el torio desprende una emanación, también radiactiva, puesto que al aspirar el aire que rodea el torio, se da cuenta de que ese aire transmite la corriente fácilmente, incluso a gran distancia del torio.

También nota que las emanaciones de torio sólo permanecen radiactivas unos diez minutos y que son partículas neutras. Su radiactividad no se ve alterada por ninguna reacción química, ni por cambios en las condiciones (temperatura, campo eléctrico). Se da cuenta asimismo de que la radiactividad de esas partículas decrece exponencialmente, puesto que la corriente que pasa entre los electrodos también lo hace, y descubre así el periodo de los elementos radiactivos en 1900. Con la ayuda de un químico de Montreal, Frederick Soddy, llega en 1902 a la conclusión de que las emanaciones de torio son efectivamente átomos radiactivos, pero sin ser torio, y que la radioactividad viene acompañada de una desintegración de los elementos.

Este descubrimiento provocó un gran revuelo entre los químicos, muy convencidos del principio de indestructibilidad de la materia. Una gran parte de la ciencia de la época se basaba en este concepto. Por ello, este descubrimiento representa una auténtica revolución. Sin embargo, la calidad de los trabajos de Rutherford no dejaban margen a la duda. El mismísimo Pierre Curie tardó dos años en admitir esta idea, a pesar de que ya había constatado con Marie Curie que la radioactividad ocasionaba una pérdida de masa en las muestras. Pierre Curie opinaba que perdían peso sin cambiar de naturaleza.

Las investigaciones de Rutherford tuvieron el reconocimiento en 1903 de la Royal Society, que le otorgó la Medalla Rumford en 1904. Resumió el resultado de sus investigaciones en un libro titulado "Radioactividad" en 1904, en el que explicaba que la radioactividad no estaba influenciada por las condiciones externas de presión y temperatura, ni por las reacciones químicas, pero que comportaba un desprendimiento de calor superior al de una reacción química. Explicaba también que se producían nuevos elementos con características químicas distintas, mientras desaparecían los elementos radiactivos.

Junto a Frederick Soddy, calculó que el desprendimiento de energía debido a la desintegración nuclear era entre 20.000 y 100.000 veces superior al producido por una reacción química. Lanzó también la hipótesis de que tal energía podría explicar la energía desprendida por el sol. Él y Rutt opinan que si la tierra conserva una temperatura constante (en lo que concierne a su núcleo), esto se debe sin duda a las reacciones de desintegración que se producen en su seno. Esta idea de una gran energía potencial almacenada en los átomos encontrará un año después un principio de confirmación cuando Albert Einstein descubra la equivalencia entre masa y energía. Tras estos trabajos, Otto Hahn, el descubridor de la fisión nuclear junto con Lise Meitner, acudirá a estudiar con Rutherford en Mc Gill durante unos meses.

A partir de 1903 empieza a hacerse preguntas sobre la naturaleza exacta de las radiaciones alfa y deduce su velocidad, el signo (positivo) de su carga, y la relación que hay entre su carga y su masa, haciendo que atraviesen campos eléctricos y magnéticos. Éste es el camino que le llevará hacia sus más célebres trabajos. El motivo por el cual algunas partículas alfa rebotaban era que se desviaban por los núcleos. Rutherford no sabía al principio la carga del núcleo (positiva o negativa), pero tiempo más tarde descubrió que el núcleo estaba formado por dos componentes: protones y neutrones. Durante su estancia en Mc Gill, publicará unos 80 artículos, e inventará numerosos dispositivos que no tienen nada que ver con la física nuclear.

[editar] Manchester, 1907-1919: el núcleo atómico

En 1907, obtiene una plaza de profesor en la Universidad de Manchester, en donde trabajará junto a Hans Geiger. Junto a éste, inventará un contador que permite detectar las partículas alfa emitidas por sustancias radiactivas (prototipo del futuro contador Geiger), ya que ionizando el gas que se encuentra en el aparato, producen una descarga que se puede detectar. Este dispositivo les permite estimar el número de Avogadro de modo muy directo: averiguando el periodo de desintegración del radio, y midiendo con su aparato el número de desintegraciones por unidad de tiempo. De ese modo dedujeron el número de átomos de radio presente en su muestra.

En 1908, junto a uno de sus estudiantes, Thomas Royds, demuestra de modo definitivo lo que se suponía, es decir, que las partículas alfa son núcleos de helio. En realidad, lo que prueban es que una vez desembarazadas de su carga, las partículas alfa son átomos de helio. Para demostrarlo, aisló la sustancia radiactiva en un material suficientemente delgado para que las partículas alfa lo atravesaran efectivamente, pero para ello bloquea cualquier tipo de "emanación" de elementos radiactivos, es decir, cualquier producto de la desintegración. Recoge a continuación el gas que se halla alrededor de la caja que contiene las muestras, y analiza su espectro. Encuentra entonces gran cantidad de helio: los núcleos que constituyen las partículas alfa han recuperado electrones disponibles.

Ese mismo año gana el Premio Nobel de Química por sus trabajos de 1908. Sufrirá sin embargo un pequeño disgusto, pues él se considera fundamentalmente un físico. Una de sus citas más famosas es que "la ciencia, o es Física, o es filatelia", con lo que sin duda situaba la física por encima de todas las demás ciencias.

En 1911 hará su mayor contribución a la ciencia, al descubrir el núcleo atómico. Había observado en Montreal al bombardear una fina lámina de mica con partículas alfa, que se obtenía una deflexión de dichas partículas. Al retomar Geiger y Marsden de modo más concienzudo estos experimentos y utilizando una lámina de oro, se dieron cuenta de que algunas partículas alfa se desviaban más de 90 grados. Rutherford lanzó entonces la hipótesis, que Geiger y Marsden enfrentaron a las conclusiones de su experimento, de que en el centro del átomo debía haber un "núcleo" que contuviera casi toda la masa y toda la carga positiva del átomo, y que de hecho los electrones debían determinar el tamaño del átomo. Este modelo planetario había sido sugerido en 1904 por un japonés, Hantaro Nagaoka, aunque había pasado desapercibido. Se le objetaba que en ese caso los electrones tendrían que irradiar girando alrededor del núcleo central y, en consecuencia, caer. Los resultados de Rutherford demostraron que ese era sin dudar el modelo bueno, puesto que permitía prever con exactitud la tasa de difusión de las partículas alfa en función del ángulo de difusión y de un orden de magnitud para las dimensiones del núcleo atómico. Las últimas objeciones teóricas (sobre la irradiación del electrón) se desvanecieron con los principios de la teoría cuántica, y la adaptación que hizo Niels Bohr del modelo de Rutherford a la teoría de Max Planck, lo que sirvió para demostrar la estabilidad del átomo de Rutherford.

En 1914 empieza la Primera Guerra Mundial, y Rutherford se concentra en los métodos acústicos de detección de submarinos. Tras la guerra, ya en 1919, lleva a cabo su primera transmutación artificial. Después de observar los protones producidos por el bombardeo de hidrógeno de partículas alfa (al observar el parpadeo que producen en pantallas cubiertas de sulfuro de zinc), se da cuenta de que obtiene muchos de esos parpadeos si realiza el mismo experimento con aire y aún más con nitrógeno puro. Deduce de ello que las partículas alfa, al golpear los átomos de nitrógeno, han producido un protón, es decir que el núcleo de nitrógeno ha cambiado de naturaleza y se ha transformado en oxígeno, al absorber la partícula alfa. Rutherford acababa de producir la primera transmutación artificial de la historia. Algunos opinan que fue el primer alquimista que consiguió su objetivo.

[editar] Cambridge, 1919-1937: la edad de oro en Cavendish

Ese mismo año sucede a J.J. Thomson en el laboratorio Cavendish, pasando a ser el director. Es el principio de una edad de oro para el laboratorio y también para Rutherford. A partir de esa época, su influencia en la investigación en el campo de la física nuclear es enorme. Por ejemplo, en una conferencia que pronuncia ante la Royal Society, ya alude a la existencia del neutrón y de los isótopos del hidrógeno y del helio. Y éstos se descubrirán en el laboratorio Cavendish, bajo su dirección. James Chadwick, descubridor del neutrón, Niels Bohr, que demostró que el modelo planetario de Rutherford no era inestable, y Robert Oppenheimer, al que se considera el padre de la bomba atómica, están entre los que estudiaron en el laboratorio en los tiempos de Rutherford. Moseley, que fue alumno de Rutherford, demostró, utilizando la desviación de los rayos X, que los átomos contaban con tantos electrones como cargas positivas había en el núcleo, y que de ello resultaba que sus resultados "confirmaban con fuerza las intuiciones de Bohr y Rutherford".

El gran número de clases que dio en el laboratorio Cavendish, la gran cantidad de contactos que tuvo con sus estudiantes dio una imagen de Rutherford como una persona muy pegada a los hechos, más aún que a la teoría, que para él sólo era parte de una "opinión". Este apego a los hechos experimentales, era el indicio de un gran rigor y de una gran honestidad. Cuando Enrico Fermi consiguió desintegrar diversos elementos con la ayuda de neutrones, le escribió para felicitarle de haber conseguido "escapar de la física teórica".

Sin embargo, por fortuna, Rutherford no se detenía en los hechos, y su gran imaginación le dejaba entrever más allá, las consecuencias teóricas más lejanas, pero no podía aceptar que se complicaran las cosas inútilmente. Con frecuencia hacía observaciones en este sentido a los visitantes del laboratorio que venían a exponer sus trabajos a los estudiantes y a los investigadores, cualquiera que fuera la fama del visitante. Su apego a la simplicidad era casi proverbial. Como él mismo decía: "Yo mismo soy un hombre sencillo".

Su autoridad en el laboratorio Cavendish no se basaba en el temor que pudiera inspirar. Por el contrario, Rutherford tenía un carácter jovial. Se sabía que estaba avanzando en sus trabajos cuando se le oía canturrear en el laboratorio. Sus alumnos lo respetaban mucho, no tanto por sus pasados trabajos o por el mito que le rodeaba como por su atractiva personalidad, su generosidad y su autoridad intelectual. Se le apodó "el cocodrilo", porque como un cocodrilo que nunca ve su propia cola, siempre miraba delante de él.

También ésta es para Rutherford la época de los honores: fue presidente de la Royal Society entre 1925 y 1930, y chairman de la Academic Assistance Council, que en esos políticamente turbulentos tiempos, ayudaba a los universitarios alemanes que huían de su país. También se le concedió la Medalla Franklin en 1924 y de la Medalla Faraday en 1936. Realizó su último viaje a Nueva Zelanda, su país de nacimiento, que nunca olvidó, en 1925 y fue recibido como un héroe. Alcanzó la nobleza en 1931 y obtuvo el título de Barón Rutherford de Nelson, de Cambridge. Pero ese mismo año murió su única hija, Eileen, nueve días después de haber dado a luz a su cuarto hijo.

Rutherford era un hombre muy robusto y entró en el hospital en 1937 para una operación menor, tras haberse herido podando unos árboles de su propiedad. A su regreso a su casa, parecía recuperarse sin problemas, pero su estado se agravó repentinamente. Murió el 19 de octubre y se le enterró en la abadía de Westminster, junto a Isaac Newton y Kelvin.

Los experimentos llevados a cabo por Rutherford permitieron, además, el establecimiento de un orden de magnitud para las dimensiones reales del núcleo atómico. Durante la Primera Guerra Mundial estudió la detección de submarinos mediante ondas sonoras, de modo que fue uno de los precursores del sonar.

Asimismo, logró la primera transmutación artificial de elementos químicos (1919) mediante el bombardeo de un átomo de nitrógeno con partículas alfa. Las transmutaciones se deben a la capacidad de transformarse que tiene un átomo sometido a bombardeo con partículas capaces de penetrar en su núcleo. Muy poco después de su descubrimiento se precisaron las características de las transmutaciones y se comprobó que la energía cinética de los protones emitidos en el proceso podía ser mayor que la de las partículas incidentes, de modo que la energía interna del núcleo tenía que intervenir la transmutación. En 1923, tras fotografiar cerca de 400 000 trayectorias de partículas con la ayuda de una cámara de burbujas (cámara de Wilson), Blackett pudo describir ocho transmutaciones y establecer la reacción que había tenido lugar.

Rutherford recibió el Premio Nobel de Química de 1908 en reconocimiento a sus investigaciones relativas a la desintegración de los elementos. Entre otros honores, fue elegido miembro (1903) y presidente (1925-1930) de la Royal Society de Londres y se le concedieron los títulos de sir (1914) y de barón Rutherford of Nelson (1931). A su muerte, sus restos mortales fueron inhumados en la abadía de Westminster.

 
  Chiquityquimica
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COLORIN COLORADO
  historia de la quimica
Historia de la química

La historia de la química está intensamente unida al desarrollo del hombre, ya que embarca desde todas las transformaciones de materias y las teorías correspondientes. A menudo la historia de la química se relaciona íntimamente con la historia de los químicos y -según la nacionalidad o tendencia política del autor- resalta en mayor o menor medida los logros hechos en un determinado campo o por una determinada nación.

La ciencia química surge en el siglo XVII a partir de los estudios de alquimia populares entre muchos de los científicos de la época. Se considera que los principios básicos de la química se recogen por primera vez en la obra del científico británico Robert Boyle: The Skeptical Chymist (1661). La química como tal comienza sus andares un siglo más tarde con los trabajos de Antoine Lavoisier que en conjunto con Carl Wilhelm Scheele descubrieron el oxígeno, Lavoisier a su vez propuso la ley de conservación de masa y la refutación de la teoría del flogisto como teoría de la combustión.
  Primeros avances de la quimica
Primeros avances de la química [editar]El principio del dominio de la química es el dominio del fuego. Hay indicios de que hace más de 500.000 años, en tiempos del homo erectus, algunas tribus consiguieron este logro que aún hoy es una de las tecnologías más importantes. No sólo daba calor en las noches de frío, también ayudaba a protegerse contra los animales salvajes y permitía la preparación de comida cocida. Esta contenía menos microorganismos patógenos y era más fácilmente digerida. Así bajaba la mortalidad y se mejoraban las condiciones generales de vida. Nuevamente, resultó imprescindible para el desarrollo de la metalurgia, la madera, el carbón y la mayoría de los procesos químicos. Es asi como la química es considerada una ciencia importante para la explicación de fenómenos de la vida cotidiana.

La metalurgia [editar]Artículo principal: Metalurgia
La metalurgia como uno de los principales procesos de transformación utilizados hasta 1991 comenzó con el descubrimiento del cobre, del oro y de la plata. Aunque existe en la naturaleza como elemento la mayor parte se halla en forma de minerales como la calcopirita, la azurita o la malaquita. Especialmente las últimas son fácilmente reducidas al metal. Se supone que unas joyas fabricadas de alguno de estos minerales y caídas accidentalmente al fuego llevaron al desarrollo de los procesos correspondientes para obtener el metal.

Luego por experimentación o como resultado de mezclas accidentales se descubrió que las propiedades mecánicas del cobre se podían mejorar en sus aleaciones. Especialmente tuvo éxito la aleación del cobre con el estaño y trozos de otros elementos como el arsénico conocido como bronce que se consiguió de forma aparentemente independiente en oriente próximo y en China desde dónde se extendió por casi todo el mundo y que dio el nombre a la edad de bronce.

Unas de las minas de estaño (como otro mineral esencial en la obtención de esta aleación) más importantes de la antigüedad se hallaban en las islas británicas. Originalmente el comercio fue dominado por los fenicios. Luego el control sobre este recurso importante probablemente era la razón de la invasión romana en las Britania.

Los hititas fueron unos de los primeros en obtener el hierro a partir de sus minerales. Este proceso es mucho más complicado ya que requiere temperaturas más elevadas y por lo tanto la construcción de hornos especiales. Sin embargo el metal obtenido así era de baja calidad con un elevado contenido en carbono y tenía que ser mejorado en diversos procesos de purificación y forjándolo. La humanidad tardó siglos en desarrollar los procesos actuales de obtención de acero, (generalmente por oxidación de las impurezas insuflando oxígeno o aire en el metal fundido (proceso de Besmer). Su dominio era uno de los pilares de la revolución industrial.

Otro hito metalúrgico era la obtención del aluminio. Descubierto a principios del siglo XIX y en un principio obtenido por reducción de sus sales con metales alcalinos, destacó por su ligereza. Su precio superó el del oro y era tan apreciado que unos cubiertos regalados a la corte francesa se fabricaron de este metal. Con el descubrimiento de la síntesis por electrólisis y posteriormente el desarrollo de los generadores eléctricos su precio cayó abriéndose nuevos campos para su uso.
  Que son los elementos quimicos
La definición de elemento, sustancia simple, que ofrece Lavoisier en su "Traité Élémentaire de Chimie" coincide con la que formuló Boyle un siglo antes. En términos actuales, un elemento químico es una sustancia que por ningún procedimiento, ni físico ni químico, puede separarse o descomponerse en otras sustancias más sencillas. Para Lavoisier , y para la química del siglo XVIII, las sustancias simples se agrupaban en cuatro grupos, como podemos observar en la reproducción de la figura: sustancias que pueden considerarse como elementos de los cuerpos, sustancias no metálicas oxidables y acidificables, sustancias metálicas oxidables y acidificables y sustancias salidificables térreas.

El primer grupo de sustancias de la tabla de Lavoisier, es el único al que concede la categoría de elementos. En él se incluyen la luz y el "calórico".

El segundo grupo está constituido por elementos que al oxidarse dan ácidos.

El tercer grupo lo forman los metales y el cuarto grupo las "tierras", que son sustancias pendientes de una caracterización más profunda

Llama la atención como la luz y el "calórico" son considerados sustancias simples.


  La quimica Como ciencia hoy
La química como ciencia El filósofo griego Aristóteles pensaba que las sustancias estaban formadas por cuatro elementos: tierra, aire, agua y fuego. Paralelamente discurría otra corriente, el atomismo, que postulaba que la materia estaba formada de átomos, partículas indivisibles que se podían considerar la unidad mínima de materia. Esta teoría, propuesta, por el filósofo griego Leucipo de Mileto y su discípulo Demócrito de Abdera no fue popular en la cultura occidental dado el peso de las obras de Aristóteles en Europa. Sin embargo tenía seguidores (entre ellos Lucrecio) y la idea se quedó presente hasta el principio de la edad moderna.

Entre los siglos III a. C. y el siglo XVI d.C la química estaba dominada por la alquimia. El objetivo de investigación más conocido de la alquimia era la búsqueda de la piedra filosofal, un método hipotético capaz de transformar los metales en oro. En la investigación alquímica se desarrollaron nuevos productos químicos y métodos para la separación de elementos químicos. De este modo se fueron asentando los pilares básicos para el desarrollo de una futura química experimental.

La química como tal comienza a desarrollarse entre los siglos XVI y XVII. En esta época se estudió el comportamiento y propiedades de los gases estableciéndose técnicas de medición. Poco a poco fue desarrollándose y refinándose el concepto de elemento como una sustancia elemental que no podía descomponerse en otras. También esta época se desarrolló la teoría del flogisto para explicar los procesos de combustión.


Imagen de Antoine Lavoissier, considerado como el fundador de la químicaA partir del siglo XVIII la química adquiere definitivamente las características de una ciencia experimental. Se desarrollan métodos de medición cuidadosos que permiten un mejor conocimiento de algunos fenómenos, como el de la combustión de la materia, descubriendo Lavoisier el oxígeno y sentando finalmente los pilares fundamentales de la química moderna.

El vitalismo y el comienzo de la química orgánica [editar]Después de que se comprendieran los principios de la combustión, otro debate de gran importancia se apoderó de la química: el vitalismo y la distinción esencial entre la materia orgánica e inorgánica. Esta teoría asumía que la materia orgánica sólo puede ser producida por los seres vivos, atribuyendo este hecho a una vis vitalis inherente a la propia vida. Base de esta asunción era la dificultad de obtener materia orgánica a partir de precursores inorgánicos. Este debate fue revolucionado cuando Friedrich Wöhler descubrió accidentalmente en 1828 cómo se podía sintetizar la urea a partir de cianato de amonio, mostrando que la materia orgánica podía crearse de manera química. Sin embargo, aún hoy en día se mantiene la clasificación en química orgánica e inorgánica, ocupándose la primera esencialmente de los compuestos del carbono y la segunda de los compuestos de los demás elementos.

Los motores para el desarrollo de la química orgánica eran, en el principio, la curiosidad sobre los productos presentes en los seres vivos (con probablemente la esperanza de encontrar nuevos fármacos) y la síntesis de los colorantes o tintes. La última surgió tras el descubrimiento de la anilina por Runge y la primera síntesis de un colorante artificial por Perkin.

Luego se añadieron los nuevos materiales como los plásticos, los adhesivos, los cristales líquidos, los fitosanitarios, etc.

Hasta la Segunda Guerra Mundial la principal materia prima de la industria química orgánica era el carbón, dada la gran importancia de Europa en el desarrollo de esta parte de la ciencia y el hecho que en Europa no hay grandes yacimientos de alternativa, como el petróleo. Con el final de la Segunda Guerra Mundial y el creciente peso de los Estados Unidos en el sector químico, la química orgánica clásica se convierte cada vez más en la petroquímica que se conoce hoy. Una de las principales razones es la mayor facilidad de transformación y la gran variedad de productos de partida encontradas en el petróleo.

  Dimitri Mendeleyev
Dmitri Mendeléyev
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Dmitri Ivánovich Mendeleiev (ruso: Дми́трий Ива́нович Менделе́ев)

Dmitri Mendeleiev en 1897
Nacimiento 8 de febrero de 1834
Tobolsk (Siberia Ocidental)
Fallecimiento 2 de febrero de 1907
San Petersburgo
Residencia Rusia
Nacionalidad(es) Rusa
Campo(s) Química
Instituciones Universidad de San Petersburgo
Alma máter Heidelberg
Conocido por Crear la Tabla periódica de los elementos
Cónyuge Ana Ivánova Pópova
Dmitri Ivánovich Mendeleiev (ruso: Дми́трий Ива́нович Менделе́ев) (8 de febrero 1834, en Tobolsk - 2 de febrero 1907, en San Petersburgo) fue un químico ruso, creador de la Tabla periódica de los elementos.

Sobre las bases del análisis espectral establecido por Bunsen y Kirchoff, se ocupó de problemas químico-físicos relacionados con el espectro de emisión de los elementos. Realizó las determinaciones de volúmenes específicos y analizó las condiciones de licuefacción de los gases, así como también el origen de los petróleos.

Su investigación principal fue la que dio origen a la enunciación de la ley periódica de los elementos, base del sistema periódico que lleva su nombre. En 1869 publicó su libro Principios de la química, en el que desarrollaba la teoría de la Tabla periódica de los elementos. El día 2 de febrero de 2007 se cumplió un centenario de su muerte.
Hoy habia 4 visitantes (7 clics a subpáginas) ¡Aqui en esta página!
chiquityquimica ESPERO QUE LE HAYA GUSTADO Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis